Protection against Mycobacterium ulcerans Lesion Development by Exposure to Aquatic Insect Saliva

نویسندگان

  • Laurent Marsollier
  • Estelle Deniaux
  • Priscille Brodin
  • Agnès Marot
  • Christelle Mbondji Wondje
  • Jean-Paul Saint-André
  • Annick Chauty
  • Christian Johnson
  • Fredj Tekaia
  • Edouard Yeramian
  • Pierre Legras
  • Bernard Carbonnelle
  • Gilles Reysset
  • Sara Eyangoh
  • Geneviève Milon
  • Stewart T Cole
  • Jacques Aubry
چکیده

BACKGROUND Buruli ulcer is a severe human skin disease caused by Mycobacterium ulcerans. This disease is primarily diagnosed in West Africa with increasing incidence. Antimycobacterial drug therapy is relatively effective during the preulcerative stage of the disease, but surgical excision of lesions with skin grafting is often the ultimate treatment. The mode of transmission of this Mycobacterium species remains a matter of debate, and relevant interventions to prevent this disease lack (i) the proper understanding of the M. ulcerans life history traits in its natural aquatic ecosystem and (ii) immune signatures that could be correlates of protection. We previously set up a laboratory ecosystem with predatory aquatic insects of the family Naucoridae and laboratory mice and showed that (i) M. ulcerans-carrying aquatic insects can transmit the mycobacterium through bites and (ii) that their salivary glands are the only tissues hosting replicative M. ulcerans. Further investigation in natural settings revealed that 5%-10% of these aquatic insects captured in endemic areas have M. ulcerans-loaded salivary glands. In search of novel epidemiological features we noticed that individuals working close to aquatic environments inhabited by insect predators were less prone to developing Buruli ulcers than their relatives. Thus we set out to investigate whether those individuals might display any immune signatures of exposure to M. ulcerans-free insect predator bites, and whether those could correlate with protection. METHODS AND FINDINGS We took a two-pronged approach in this study, first investigating whether the insect bites are protective in a mouse model, and subsequently looking for possibly protective immune signatures in humans. We found that, in contrast to control BALB/c mice, BALB/c mice exposed to Naucoris aquatic insect bites or sensitized to Naucoris salivary gland homogenates (SGHs) displayed no lesion at the site of inoculation of M. ulcerans coated with Naucoris SGH components. Then using human serum samples collected in a Buruli ulcer-endemic area (in the Republic of Benin, West Africa), we assayed sera collected from either ulcer-free individuals or patients with Buruli ulcers for the titre of IgGs that bind to insect predator SGH, focusing on those molecules otherwise shown to be retained by M. ulcerans colonies. IgG titres were lower in the Buruli ulcer patient group than in the ulcer-free group. CONCLUSIONS These data will help structure future investigations in Buruli ulcer-endemic areas, providing a rationale for research into human immune signatures of exposure to predatory aquatic insects, with special attention to those insect saliva molecules that bind to M. ulcerans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aquatic insects as a vector for Mycobacterium ulcerans.

Mycobacterium ulcerans is an emerging environmental pathogen which causes chronic skin ulcers (i.e., Buruli ulcer) in otherwise healthy humans living in tropical countries, particularly those in Africa. In spite of epidemiological and PCR data linking M. ulcerans to water, the mode of transmission of this organism remains elusive. To determine the role of aquatic insects in the transmission of ...

متن کامل

Persistent association of Mycobacterium ulcerans with West African predaceous insects of the family belostomatidae.

A number of studies have suggested that Mycobacterium ulcerans, the etiological agent of Buruli ulcer, may be transmitted to humans by insect bites. M. ulcerans has been isolated from a predaceous aquatic insect, and PCR detection of M. ulcerans DNA in aquatic environments suggests that the organism is widely distributed within many invertebrate taxa and functional feeding groups. Thus, M. ulce...

متن کامل

Mycobacterium bovis BCG vaccination as prophylaxis against Mycobacterium ulcerans osteomyelitis in Buruli ulcer disease.

Mycobacterium ulcerans disease, or Buruli ulcer (BU), causes significant morbidity in West Africa. Clinically, the disease presents in the skin as either nonulcerative or ulcerative forms and often invades bones either subjacent to the skin lesion (contiguous osteomyelitis) or remote from the skin lesion (metastatic osteomyelitis). Osteomyelitis represents a severe form of the disease that ofte...

متن کامل

Aquatic Invertebrates as Unlikely Vectors of Buruli Ulcer Disease

Buruli ulcer is a necrotizing skin disease caused by Mycobacterium ulcerans and associated with exposure to aquatic habitats. To assess possible transmission of M. ulcerans by aquatic biting insects, we conducted a field examination of biting water bugs (Hemiptera: Naucoridae, Belostomatidae, Nepidae) in 15 disease-endemic and 12 non-disease-endemic areas of Ghana, Africa. From collections of 2...

متن کامل

A booster vaccination with Mycobacterium bovis BCG does not increase the protective effect of the vaccine against experimental Mycobacterium ulcerans infection in mice.

Buruli ulcer, caused by Mycobacterium ulcerans, is a necrotizing skin disease emerging particularly in West Africa. M. bovis BCG vaccine offers only short-term protection against experimental footpad infection of C57BL/6 mice with M. ulcerans, and the duration of this protection cannot be prolonged by a booster vaccination.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Medicine

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2007